3.1382 \(\int \frac{1}{\sqrt{b d+2 c d x} (a+b x+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=137 \[ -\frac{4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right ),-1\right )}{\sqrt{d} \left (b^2-4 a c\right )^{3/4} \sqrt{a+b x+c x^2}}-\frac{2 \sqrt{b d+2 c d x}}{d \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}} \]

[Out]

(-2*Sqrt[b*d + 2*c*d*x])/((b^2 - 4*a*c)*d*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*
c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/((b^2 - 4*a*c)^(3/4)*Sqrt[d]*Sq
rt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.112691, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {687, 691, 689, 221} \[ -\frac{2 \sqrt{b d+2 c d x}}{d \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}-\frac{4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{\sqrt{d} \left (b^2-4 a c\right )^{3/4} \sqrt{a+b x+c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[b*d + 2*c*d*x])/((b^2 - 4*a*c)*d*Sqrt[a + b*x + c*x^2]) - (4*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*
c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/((b^2 - 4*a*c)^(3/4)*Sqrt[d]*Sq
rt[a + b*x + c*x^2])

Rule 687

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*c*(d + e*x)^(m +
1)*(a + b*x + c*x^2)^(p + 1))/(e*(p + 1)*(b^2 - 4*a*c)), x] - Dist[(2*c*e*(m + 2*p + 3))/(e*(p + 1)*(b^2 - 4*a
*c)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0]
 && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[p, -1] &&  !GtQ[m, 1] && RationalQ[m] && IntegerQ[2*p]

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && EqQ[m^2, 1/4]

Rule 689

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 -
4*a*c))])/e, Subst[Int[1/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[
{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{b d+2 c d x} \left (a+b x+c x^2\right )^{3/2}} \, dx &=-\frac{2 \sqrt{b d+2 c d x}}{\left (b^2-4 a c\right ) d \sqrt{a+b x+c x^2}}-\frac{(2 c) \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{a+b x+c x^2}} \, dx}{b^2-4 a c}\\ &=-\frac{2 \sqrt{b d+2 c d x}}{\left (b^2-4 a c\right ) d \sqrt{a+b x+c x^2}}-\frac{\left (2 c \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{b d+2 c d x} \sqrt{-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}}} \, dx}{\left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}}\\ &=-\frac{2 \sqrt{b d+2 c d x}}{\left (b^2-4 a c\right ) d \sqrt{a+b x+c x^2}}-\frac{\left (4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{\left (b^2-4 a c\right ) d \sqrt{a+b x+c x^2}}\\ &=-\frac{2 \sqrt{b d+2 c d x}}{\left (b^2-4 a c\right ) d \sqrt{a+b x+c x^2}}-\frac{4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{\left (b^2-4 a c\right )^{3/4} \sqrt{d} \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0704735, size = 100, normalized size = 0.73 \[ -\frac{2 \sqrt{d (b+2 c x)} \left (2 \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\frac{(b+2 c x)^2}{b^2-4 a c}\right )+1\right )}{d \left (b^2-4 a c\right ) \sqrt{a+x (b+c x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[b*d + 2*c*d*x]*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d*(b + 2*c*x)]*(1 + 2*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]*Hypergeometric2F1[1/4, 1/2, 5/4, (b
+ 2*c*x)^2/(b^2 - 4*a*c)]))/((b^2 - 4*a*c)*d*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [A]  time = 0.226, size = 206, normalized size = 1.5 \begin{align*} 2\,{\frac{\sqrt{c{x}^{2}+bx+a}\sqrt{d \left ( 2\,cx+b \right ) }}{d \left ( 4\,ac-{b}^{2} \right ) \left ( 2\,{c}^{2}{x}^{3}+3\,bc{x}^{2}+2\,acx+{b}^{2}x+ab \right ) } \left ({\it EllipticF} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ) \sqrt{-4\,ac+{b}^{2}}\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}+2\,cx+b \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x)

[Out]

2*(EllipticF(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*(-4*a*c+b^2)^(1/2)*(
(b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*
c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)+2*c*x+b)*(c*x^2+b*x+a)^(1/2)*(d*(2*c*x+b))^(1/2)/(4*a*c-b^2)/d/(2*c^2*
x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{2 \, c d x + b d}{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{2 \, c d x + b d} \sqrt{c x^{2} + b x + a}}{2 \, c^{3} d x^{5} + 5 \, b c^{2} d x^{4} + 4 \,{\left (b^{2} c + a c^{2}\right )} d x^{3} + a^{2} b d +{\left (b^{3} + 6 \, a b c\right )} d x^{2} + 2 \,{\left (a b^{2} + a^{2} c\right )} d x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x + a)/(2*c^3*d*x^5 + 5*b*c^2*d*x^4 + 4*(b^2*c + a*c^2)*d*x^3 + a^
2*b*d + (b^3 + 6*a*b*c)*d*x^2 + 2*(a*b^2 + a^2*c)*d*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{d \left (b + 2 c x\right )} \left (a + b x + c x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)**(1/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral(1/(sqrt(d*(b + 2*c*x))*(a + b*x + c*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{2 \, c d x + b d}{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*c*d*x+b*d)^(1/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(2*c*d*x + b*d)*(c*x^2 + b*x + a)^(3/2)), x)